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THE PROBLEM OF TIME-OPTIMAL CONTROL WITH SEARCH FOR A TARGET POINT* 

A.A. MELIKYAN 

A formulation of the problem of guaranteed time-optimal control is given 
such that the position of the target point (the right-hand end of the 
trajectory) is defined to within some set of uncertainty. The objective 
of the control is to detect (to observe) the target point within the 
boundary of this set and to bring the phase vector of the controlled 
system to the target point as quickly as possible. The target point is 
assumed to be known (detected) exactly if it belongs to an information 
region that moves along with the phase vector. In the case where the 
controlled system performs a simple motion in a plane, the set of 
uncertainty is a bounded convex domain and the information region is a 
half-plane, an algorithm for constructing the optimal phase pattern of 
trajectories searching for the target point is proposed and 
substantiated. Examples are discussed. The paper develops the 
investigations of /l/, and the subject matter of the article is close to 
that of /2, 3/. 

1. Formulation of the problem. A two-point problem of programmed time-optimal control 
for a dynamical system is given by the following relations: 

2' = f (G 4 t), u E u, t E [to, Tl 
x (to) = .z’, x (7’) = 9, J = T - t, - min (1.1) 

Here z cz R'" is the phase vector, u and U are the control vector and the set of admissible 
values of u, and x0 and x1 are the initial and final values of the phase vector. In the 

classical formulation /4/ the admissible programmed control is constructed on the basis of 
the complete information about relations (l.l), i.e. about the dynamics of the system and 
about the vectors x0, x’ER”, which is available to the controlling side. Such a control is 
defined as a function u = u (z", t,, d; t), t E It,,, 2’1, where 2, l#), x' play the role of par- 
ameters. In the present paper it is assumed that the exact position of the target point X1 
is unknown to the controlling side at the initial instant. 

We shall specify more precisely the information that is available to the controlling 
side and we shall give a description of the class of admissible control functions. At the 
initial instant, apart from the dynamical relations (1.1) and the position x0, t,, the con- 
trolling side knows the set of uncertainty D such that 

x’ED,DcR~ (1.2) 

In order to bring the system to the point z (T) = x', the controlling side should be 
able to obtain information that is more accurate than (1.2). Such a possibility is described 
mathematically with the aid of a moving information region G = G (z (t)) that depends on the 
phase vector of the system, where G(x) = {E E R": E - x E G,}, with G, = G(0) being a 
given set. Therefore, G (x (t)) is a fixed domain in the moving coordinate system with origin 
at x(t) and with axes parallel to the axes of the initial coordinate system. By assumption, 
5' @ G (z"). The exact value of the vector x1 becomes known to the controlling side at the 
first instant t = t, > t, when the observation (detection) condition 

2' E G (x (1)) (t = 1,) (1.3) 

is met (Fig.1). 
Thus, at any instant during the motion along the trajectory x(t) corresponding to some 

control function u (% the controlling side has access to the values of t, 5 (t), and 
information on whether inclusion (1.3) is satisfied or not, and in the case when the inclusion 
is satisfied they also have access to exact information about x1. 

We shall assume that D and G are closed simply connected domains. In addition, in order 
that, generally speaking, a finite time T should be realized, we assume that D is bounded. 
Although the convexity of the sets is not discussed as a special case, in practical situations 
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the most characteristic domains D and G are convex. 

Fig.1 

We introduce into our disucssion the following sets in R”: 

X, = {r E R”: D c G (x)}, X, = {x E R”: G (x) n D # 01 (1.4) 

It is obvious that X, is contained in X,. If x 0) E X0, then it is guaranteed that x1 
will be observed at a time t. If 5 (t) E x, , then the detection at time t is possible but 
not certain. We shall assume that z" belongs to the domain X = Rn\ X,. This means that 
the target point cannot be detected at the initial instant. Generally speaking, the cases 
where D and G (9) have common points but x1 is not observed, i.e. i C$ X, and x1@ G(2), 
are also interesting. In such cases, by replacing D by a slightly contracted set, one can 
reduce the discussion to the previous case. 

Let us describe the class of admissible control functions. Under the given assumptions 
concerning information about the system, it is obvious that the final condition z(T) =x1 
must not be guaranteed in the class of purely programmed control functions. It is necessary 
to correct (to change) the programmed control function after obtaining information about x1 
at the instant t, when condition (1.3) is satisfied. In this connection, we shall assume 
that piecewise programmed control functions consisting of two parts given by a pair of control 
functions 

u = {I& (2; t), ur (x*, 1*, 2; t)) (1.5) 

with values in U are admissible. Here P, x1, x*, t, play the role of parameters with values 
in the domains x0 E: X, x* E Xl, x1 ED, t, > t,. The other parameters t,, D and G, which 
define the functions are omitted in our notation for uO. With respect to the time variable, 
the functions ui are defined in sufficiently long intervals to< t <8,, t, < t<fi,. Only 
general requirements are imposed on the character of the dependence on time and upon the 
properties of the functions in (1.1) so as to make sure that there is a unique solution of 
system (1.1) in the time interval in question. 

Therefore, to construct a control function of the form (1.5), it is necessary to obtain 
exact information on the parameters x*, t, and x1 for the motion at the instant t, in 
addition to the initial information mentioned above (Fig.1). 

The motion of system (1.1) corresponding to a control function of the form (1.5) can be 
constructed in the following way. Eq.Cl.1) with the control function u,(i; t) for t> to 
is integrated up to the time t, when condition (1.3) is satisfied and the vector x1 becomes 
known. Next, the control function Ul (s*, t,, x'; t) for t*< tf T is used, which ensures 
that the equality x (T) = x1 is satisfied at the time T. Only those pairs (1.5) are regarded 
as being admissible for which the corresponding values of t, and T are finite. We shall 
assume that the set of admissible control functions is non-empty for all vectors x0 in 
question. 

If x0 is fixed, then for each admissible control function (1.5) and for each vector 
x~ED, there is a corresponding trajectory of system (1.1) passing through x1 and there 
is the corresponding time of motion /(x“,s',u) = T -tt,. 

Let us consider the problem of the guaranteed minimum time of approaching x1. 

Problem 1. Find the guaranteed minimum time of action J, W and the admissible 
control function u* that provides the minimum 

I,(zO) = minmax I (z',J',u)= max J(x",xl,u*), .z*ED 
u X' Xl (1.6) 

Here minimization is carried out over all admissible control functions. It is assumed 
that the extreme values are attained. 

It is fairly obvious that the second component of the control function u* of the form 
(1.5) that appears in (1.6) is the time-optimal programme of action for problem (1.1) with 
full information and with initial position x*, t,. We shall assume that this component is, 
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in principle, known. Then the control function Gl (X? 4 for the search problem and the 
corresponding trajectory constitute the basic object sought. 

As fax as information in the system is concerned, the above controlled system with 

incomplete information is a model for some control problems in robot technology /I/ and also 
for a number of other control and search problems. 

An obvious illustration of the proposed model is given by identifying the information 
region G (X (Q) with a cone of light that can be moved around in a 'Vdark17 space to illuminate 
(to detect) a stationary object x1 in a given domain D. 

The basic difference between the formulation of the problem posed in the present paper 
and the problems of guaranteed search /2, 3/ lies in the fact that apart from finding the 

stationary object xl, one should also bring the phase vector to x1 as quickly as possible. 
Moreover, in the case of search problems it is usually assumed that G(z) c D for all z, 

i.e., the search is carried out inside the domain D. Below, we consider the case where X,is 
a non-empty set, i.e., there are vectors x ERn such that DC G(x). 

Let us note a simple consequence of (1.6): 

J, (2, D') < J (~,O),O'CD (2.7) 

where the corresponding set D is included in the notation for J*. 

2. The probbm in a plane. Let n =2 and let system (1.1) have the simple form 

2’ = u, 1 u 1 < 1, 2 (to) = 20, z (T) = 2’ 
.z = (x, y) E Rx, I u I = r/ul” + “a2 (2.1) 

D is an arbitrary bounded domain with doubly smooth boundary and G is a right half-plane whose 
boundary is parallel to the ordinate axis with the phase vector belonging to the boundary of 
the stationary information domain. Then each of the sets X0 and XL given by (1.4) is a 
left half-plane whose boundary is tangent to 1). In particular, 8X, coincides with the 
ordinate axis (Fig.2). 

Fig.2 ‘\’ 
su 

.A ’ Fig.3 

As a preliminary, we construct a field of trajectories of system (2.1) in the domain 
x =RS\Xr. It will be shown later that the field corresponds to the optimal control func- 
tion uo (z"; 2) for the search problem. The necessary illustrations are given in Fig.2. We 
choose an orthogonal system of coordinates ZZJ such that D is contained in the first quadrant 
and the coordinate axes are tangent to I). We construct a vertical interval AB (i.e., an 
interval that is parallel to the ZJ axis) so that A3 is the chord that is closest to the y 
axis and such that the lines tangent to D at the end-points of the chord are perpendicular to 
each other (and intersect each other at K). Such an interval exists and is unique since, by 
virtue of the smoothness of the boundary 8D, there is a continuous monotonic one-to-one func- 
tion p(x) defined in some interval d,<X < x',fi (0) = 3t, /3 (X') = 0, where p(z) is the 
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angle between the lines tangent to dD at the paints of intersection of 130 and the 
vertical line with the first coordinate 5 E [O, 2'1. The point F(xF, yr), which is called 
the focal point, is the mid-point of the interval AB. The lines tangent to D at C and E 
are horizontal. PP' and QQ' are vertical lines passing through C and E, respectively. The 
convex (concave) curve F'Q (8') represents the graph of a function y = y (z), where 

The function y = v(x) defines a convex (concave) segment AE (30 of the boundary of D. 
As follows from an analysis of the derivative of (2.21, the curves FQ and FP are connected 
smoothly with the rays QQ' and PP’. The convexity properties of these curves follow from 
the formula y" = Vz'p" (1 -j- li(~'~), which is obtained by differentiating (2.2) and from the 
fact that D is a convex domain. If integral (2.2) over the left half-neighbourhood of the 
point C(E) diverges, then the point P(Q) is an infinitely distant point. The straight 
line FF’ is a common tangent of the curves FQ and FP at F. 

We denote by L the piecewise smooth curve PPQ with a cusp at F and without the end- 
points P and Q, and we denote by L' the curve Q'QFPP', whose branches tend to infinity. We 
denote by Xt the open domain at the right-hand side of L'. It is obvious that XC X,,. We 
consider the family of rays tangent to L, (i.e. half-lines cut off from the tangent lines by 
the points of tangency) that run into the domain XI. 

Since the derivative y'(x) is a monotonic function, for each point in Xr.there is 
exactly one ray from the given family passing through this point. The motion of a phase point 
with the maximum unit speed from z0 along the ray to the curve L, then along L to the focal 
point F, and further along the straight line FK to the coordinate axis, will be referred 
to as the reference motion. 

Theorem. The reference motion of a point 20 E x is a motion along the optimal trajec- 
tory of the search problem corresponding to the control function u,*(zO; t), 

Proof. First, we remaxk that the last segment of the trajectory leading to z1 is a 
vertical interval, for zr turns out to lie on the boundary of the half-plane G at the instant 
of detection t,, and the time-optimal motion from z* to 2% is the motion along the straight 
line that connects the points. 

First, we shall prove that the motion along the ray F’F is optimal. We consider the two- 
point set D’ = (A, B}. It can be shown that for any point R E XL, minimax (1.6) with 
D CZD' is equal to the common length of the broken lines RFA and RFB. Here and in what 
follows we shall refer to the length of a path rather than to the time of motion, for the 
phase point moves with unit velocity. We assert that if R E FF’, then (1.7) becomes an 
equality. We take a vertical line A’B’ passing through R. By construction,the interval XR 
is a median of the triangle A’KB’ and its length is equal to that of each of the intervals 
RB’ and RA' and the broken lines RFB and RFA. Since Ki3' and KA’ are tangent to the 
convex figure D, the target point can turn out to be in the interval A’B’ only and the dis- 
tance from the target point to R cannot exceed the length of the interval RB'. The worst 
positions of the target are the points a and B, for which the given time of reaching the 
target is exact. In this way it is established that the basic motion along F'F is optimal 
and the guaranteed time is found. In particular, if the initial point A coincides with F, 
then the guaranteed time is equal to the common length 1 FB 1 of the intervals FA and FB. 

We shall prove that each initial point M E L' has a similar property, namely the 
guaranteed time is equal to the length of the interval of the vertical line from M to the 
corresponding point N that belongs to the curve BC (or AE if M E FQ see Fig.3). Since 
21 may coincide with N, it is obvious that the guaranteed time of motion J,(M) with M 
being the initial point cannot be less than the length of the interval MN. For the guaranteed 
time J,(@) to remain the same for the motion towards F along the arc PF with z* to be 
found at N', say, the lengths of the paths MN and MM'N' should be equal. We can write this 
condition in the form 

cp (2 -/- Ax) - Y (r + Ax) -I- As = cp (r) - y (z) (2.3) 

where (*, Y 0) and (I + Ax, y(x + Ax)) are the coordinates of M and M', and As is the 
length of the arc MM'. 

By letting Ax in (2.3) tend to zero, one can obtain the differential relation 

Formula (2.2) is obtained by integrating this relation. 
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It is easy to convince oneself that for any initial point P' on the vertical ray PP' 
(Fig.2) the guaranteed time is equal to the length of the interval P'C and that this is 

guaranteed by the motion along the vertical line ,up to the point P, and then (unless z1 

turns out to be in the interval PC) along the reference trajectory. One more estimate is 

necessary to show that the result IMNI cannot become worse (greater) if z1 turns out to 
lie on the vertical line MN below M. The estimate follows from a more general estimate 
obtained at the end of the proof. 

Hence we have established that for each initial point belonging to the curve L’, the 
reference motion is optimal, and we have found the corresponding time of motion. We note 
that for the entire domain D to be surveyed (for the detection to be guaranteed), any trajec- 
tory of the search problem starting in the right half-plane r>o should end on the ordinate 
axis, and so the trajectory should intersect L’. According to what was shown, after reaching 
the curve L’, the search should be carried out along the reference trajectory. In this con- 
nection, we consider the problem of the optimal motion of system (2.1) from Z"EXr. to 
the line L’ with the integral part of the functional equal to the time of motion along L’ and 
with the terminal part equal to J, (z’), where z' E L’ and where J, is the guaranteed 
time of bringing the system from z' and z', which is already known: 

z’ = u, 1 u 1 < 1, 2 (0) = Y E x,, 2 ((3) EL' (2.5) 

J = 0 + J, (z (0)) - min 

Problem (2.5) can be solved by the methods of /4/ or by direct geometric methods. The 
set of optimal trajectories of (2.5) coincides exactly with the set of lines tangent to the 
curves FQ and FP. It is obvious that the optimal value of the functional J'(8) correspond- 
ing to (2.5) represents a lower estimate for the time J,(8): 

J’ (z”) < J, (z”), 9 es XL (2.6) 

We shall prove that the times in (2.6) are equal. To do this, we only need to prove that 
for the motion along a line tangent to L, the target point cannot be detected from a distance 
greater than the length of the remaining path of the search problem. Indeed, for an arbitrary 
point M,, the angles at the vertices M and R of the triangle MIMR corresponding to MN = 

RN, turn out to be equal to each other owing to relation (2.4) between the tangent func- 
tions of the slopes of the tangent lines MM, and NN,. Then both the length of the 
interval MINI and the length of the broken line M,MN are equal to J’(M,). Since D 
is convex, the distance to the tangent line is not less than the distance to any other point 
of D that lies above the straight line FF’. For the points below the line FF’, the estimate 
can be obtained with the use of the tangent line AA’. The required estimate 

IM,Ml+lM~I+I~~ I>~lMM,A'I 

follows from the equality (F’M, ( + I M,A’ [ = IFF’ I+ IFA 1, which was stated at the begin- 
ning of the proof as a property of the straight line FF’, from the obvious estimate IFM, I-(. 

IMIMI+ IFMl, and from the triangle inequality for FF’A&. Here lFM/ is the length 
of the arc FM, while the other lengths are understood to be those of the corresponding inter- 
vals. 

In a similar way one can discuss the case of lines tangent to FQ. Thus, the proof of 
the theorem is completed. 

We remark that the constructed field of trajectories forms only two segments of the 
boundary of D, namely EC and AE. In particular, the convex hull of the two arcs represents 
the smallest set D that generates the field. The same field is suitable for any bounded 
convex domain D lying inside the region C’CBKAEE’ such that the boundary of D contains the 
arcs BC and AE. For a (bounded) domain D stretching itself as far to the right as desired, 
all the tangents of the curves FQ and FP (without the right end-points) enter and fill the 
half-plane X. 

The above proof can be generalized to the case where it is required merely that D be a 
bounded convex domain. By Theorem 2 of /5, p.477/ the properties of convexity and monotonicity 
used in the proof are satisfied. Another method of constructing the field of trajectories of 
the search problem for a domain D whose boundary is not smooth consists in majorizing D by 
some domain D'3 D with smooth boundary and finding the limiting field as D' is contracted 
to D. In particular, in the case where D is an interval, the trajectories of the search 
problem constructed in this way agree with the results of /l/, where such a field was con- 
strutted by another method. 

3. The minim interval of observation. We assume that checking whether the detection 
condition (1.3) is satisfied is connected with the loss of some resources, and the controlling 
side is interested in starting the observation as late as possible. It is obvious that if the 
point z(t) is sufficiently far from D so that the intersection D fl G(s(t)) is empty, than 
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there is no need to carry out the observation Ito switch a sensing device on). The appropriate 
moment to switch it on is when the vector x(t) becomes an element of the set X, given by 
(1.4). However, nothing will be lost as far as the guaranteed time of bringing the system 
to the target point is concerned if the sensing device is not switched on for some additional 
time after intersecting the boundary of X,. 

Indeed, let S (x0, x1) be the time of the optimal fast motion for system (1.1) with the 
complete information. We will take some position r 0) E x, as the initial position x0 at 
t = t, and we will assume that before the arrival at .p the sensing device has not been 
switched on. If now, at the instant t,, the sensing device is switched on, then it may turn 
out that x1 is already inside the domain of observation. The longest time of motion towards 
the point x1 detected in this way is equal to the maximum value 

S*(xO) = m;x S(rO,sl), 9"~ D n G (x0) (3.1) 

It is obvious that as long as the time S* (x") does not exceed J*(P)% there is no need 
to switch the sensing device on. The inequality 

defines a domain in the space of x and t such that one can fail to carry out the observation 
while moving inside this domain without any loss as far as the original guaranteed result is 
concerned. For the automatic problem, inequality (3.2) defines a domain in the space of x. 
In the formulation of the problem given in /l/, the domain Y CR” of motion with the 
sensing device switched off was within the discretion of the controlling side and was con- 
sidered as a control element, i.e., the instant of switching the sensing device on was 
determined from the position (from the observation of the phase vector). The largest domain 
Y corresponds to the case where the times in (3.2) are equal. 

4. Examples. We consider the problem of Sect.2 with the boundary of D being an ellipse 
(z - a)*/$ + ye/b* = 1. The focal point F (which does not coincide with the foci of the ellipse) 
belongs to the abscissa axis. Computations lead to the following value of the x-coordinate 
of F: zF = a - a”/fm. The arcs BC and AE are given by the relations m(r) = *ble.2/a2- 
(2 - a)% Equality (2.2). which defines the envelopes FQ and FP, has the form 

The points Q and P are infinitely distant points. The phase pattern of the trajectories 
of the search problem for the case of a circle (a = b = p) is shown in Fig.4. The optimal 
trajectories of the search problem are distinct from the straight motion towards the centre 
of the circle and contain curvilinear segments. 

Let D be a quadrangle with sides a and with centre at the point (U/Z, 0) (see Fig.5) . 
It follows from the estimates of Sect.2 that the optimal trajectories of the search problem 
will remain the same if the vertical interval AB is taken as 0. Using the remark made at the 
end of Sect.2 or the results obtained in /l/, one can show that the optimal trajectories of 
the search problem are the straight lines directed towards the mid-point F of AB, just as in 
the case where D is equal to the interval AB. 

Fig.4 Fig.5 
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Let us consider the problem of Sect.3. For the case of the simple motion in question, 
the boundary of the region Y defined by (3.2) consists of points F’ such that 

IFF’I=uyIF’QI, QED~ G(F) 

The maximum is, of course, attained either at C or at E. Computations lead to the follow- 
ing equality defining the boundary of Y (Fig.5): 

z = l/a I2 (a + I Y I ) - v aa + Za I Y I + 4YZl. - =a < Y < + = 

Therefore, the sensing device that checks whether condition (1.3) is satisfied does not 
need to be switched on until the constructed curve is reached. As one can see in Fig.5, the 
sensing device is switched on after the domain G has "swept" more than a half of the quad- 
rangle D. 

We remark that the above constructions are suitable in the case where D consists of 
four points only, namely of the vertices of the quadrangle. The points A and B define the 
field of trajectories and the points C and E define the domain Y. 
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